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Soret-driven thermosolutal convection 

By D. T. J. HURLE A N D  E. JAKEMAN 
Royal Radar Establishment, Great Malvern, Worcs., U.K. 

(Received 5 October 1970) 

The suggestion made by the authors in a previous paper (Hurle & Jakeman 1969) 
that the Soret effect could give rise to overstable solutions of the thermosolutal 
Rayleigh-Jeffreys problem is investigated theoretically and experimentally. 

Oscillatory instability is shown to occur in initially homogeneous layers of 
water-methanol mixtures when they are heated from below. This instability 
triggers a finite-amplitude steady mode. The magnitude and sign of the Soret 
coefficient was changed by varying the composition of the mixture; as predicted, 
overstable modes were observed when the sign of the coefficient was such as to 
produce a stabilizing contribution to the density gradient. The observed critical 
Rayleigh numbers and temporal frequencies are consistent with theory. 

1. Introduction 
The mioro-homogeneity of single crystals grown from melts containing a 

solute is impaired by the presence of non-steady convective motions in the melt. 
These produce fluctuations in the growth rate of the crystals which in turn 
modulate the amplitude of the solutal boundary layer ahead of the growing 
crystal interface and result in banded distribution of solute concentration in the 
crystal (Muller & Wilhelm 1964; Utech & Flemings 1966; Hurle 1966). Simple 
experiments in which volumes of liquid metal have been heated from the side 
(Hurle 1966) or from below (Harp & Hurle 1968; Verhoeven 1969) have shown 
that oscillatory convection is a common occurrence. This type of motion is 
thought to be the main cause of the banded solute distribution found in crystals 
grown from the melt. Similar phenomena have been observed in gases (Mitchell & 
Quinn 1966). 

The present work derives from an investigation of possible mechanisms for 
this oscillatory type of motion. Since in the experiments of Verhoeven oscillatory 
motion commenced a t  Rayleigh numbers barely in excess of that predicted for 
the onset of steady motions it seemed reasonable to hope that an explanation of 
the phenomenon could be obtained from a linear theory. Confining ourselves to 
the BBnard configuration we noted that a necessary condition for linear theory 
overstability was the existence of two opposing forces; for example a destabilizing 
temperature gradient in conjunction with rotation (Chandrasekhar & Elbert 
1955; Fultz, Nagakawa & Frenzen 1954), surface tension (Jakeman 1968), or a 
stabilizing solute gradient (Veronis 1965,1968; Sani 1965; Nield 1967; Shirtcliffe 
1969; Baines & Gill 1969). In the case of rotation an additional requirement is 
that the Prandtl number should be small. In a recent letter (Hurle & Jakeman 
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1969) we showed that the minimum concentration gradients required in thermo- 
solutal convection t o  overcome the principle of the exchange of stabilities 
(Pellew & Southwell 1940) and give rise to overstability are so small that 
they can be generated by the Soret effect even in nominally pure liquids. This 
effect is the diffusion of matter in a multi-component fluid induced by an applied 
temperature gradient. It is therefore a mechanism by which solute gradients can 
be established in a mass-conserving system. 

In the next section we briefly review the description of the Soret effect and the 
related Dufour effect within the framework of phenomenological irreversible 
thermodynamics. In  $93 and 4 we derive the modified transport equation and 
evaluate, by first-order perturbation theory, the criterion for the onset of motion 
in a binary fluid mixture heated from below. Overstability is predicted to occur 
for a wide range of values of the Soret coefficient provided that its sign is such as 
to produce a stabilizing contribution to the density gradient. In  order to test the 
theoretical predictions, experiments were performed in which thin layers of 
water-methanol mixtures were heated from below. 

The experiments are described in $5. Measurements of the Rayleigh number 
and the frequency at which overstability set in are reported for various composi- 
tions together with evidence for the existence of a time-independent finite- 
amplitude mode. In  the last section the experimental and theoretical results are 
compared and discussed in the light of related work which has recently appeared 
in the literature. 

2. The Soret effect 
The phenomenological equations relating the fluxes of heat (Jg )  and matter 

(J,) to the thermal and solute gradients present in a binary fluid mixture may be 
found in text-books on irreversible thermodynamics (see, for example, de Groot & 
Mazur 1962, chapter XI). In terms of the thermal conductivity k, diffusion con- 
stant D, and density p of the mixture these equations may be written 

where p is the chemical potential of the solute, T and C are temperature and 
concentration respectively. The terms containing the Soret coeficient S,  and 
Dufour coefficient D‘ give rise to interaction between the thermal and solute 
fields even when the mixture is at rest. Since from the Onsager reciprocal rela- 
tions, D’ = SI, D, the Dufour coefficient is orders of magnitude smaller than the 
Soret coefficient in liquids, and it may be shown that the corresponding con- 
tribution to the heat flux may be neglected in this case. The same approximation 
cannot be justified in gaseous mixtures but in the present paper we shall be 
concerned chiefly with liquids and (1)  will be replaced by 

JQ = -kVT.  (3) 
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It is clear from (2) that a redistribution of solute can be induced in a two- 
component fluid by changing the temperature distribution. This redistribution 
is governed by the equations 

a q a t  = ( I ~ / ~ C , ) V ~ T ,  (4) 

(5) 

where cp  is the specific heat of the mixture and we have neglected the spatial 
variation of the coefficients of V C  and V T  in (2) and (3). For a mixture at  rest 
in the BBnard configuration (confined between two horizontal planes and sub- 
ject to a uniform vertical temperature gradient) (4) and (5) reduce to the single 
equation 

The boundary conditions are given by relation (2). If the confining planes are 
impervious so that J, vanishes there we obtain the condition 

aclat = D[ST c( I - C) V ~ T  + VT], 

aclat = D a2cIaz2. (6) 

A concentration gradient is therefore established at the boundaries, and this will 
extend a t  a rate governed by the diffusion equation (6) to the entire fluid. For a 
layer of depth d the characteristic time involved is 

T = d2/nD. (8) 

The h a 1  stationary state, when (7) holds throughout the mixture, is reached 
after times which are long compared to T. 

The Soret effect is thus a mechanism by which an applied temperature gradient 
can establish a concentration gradient in a binary liquid mixture even though it is 
confined by impervious walls. The instability of such a mixture in the BBnard 
configuration has much in common with the problem of thermosolutal (thermo- 
haline) convection. However, condition (7) relating the applied temperature 
gradient to the induced solute gradient in the stationary state eliminates the 
non-dimensional solutal Rayleigh number from the present problem. 

3. Equations of motion 
The purpose of this section and the next is to provide a theoretical basis for the 

interpretation of experimental results reported in later sections. Preliminary 
calculations indicate that conventional linear perturbation theory (Chandrase- 
khar 1961) leads to instability criteria in broad agreement with experiment and it 
seems reasonable at  this stage of the investigation to confine theoretical con- 
siderations to this lowest approximation. In  terms of the Fourier components W ,  
0, I’ of the vertical velocity, temperature and concentration respectively the 
linearized equations characterizing the state of a binary liquid mixture in the 
BBnard configuration take the form ( D  = d/dz, boundary planes at z = f 8 )  
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where a/d and o = va/d2 are the wave vector and angular frequency of the 
mode respectively, d is the depth of the layer and v the kinematic viscosity. P and 
p‘ are the adverse gradients of temperature and solute reapectively, a, a’ the 
corresponding thermal and solutal expansion coefficients, r the Prandtl number 
and s the Schmidt number. The dimensionless constant associated with the Soret 

(12) 
effect is defined by 

where c is the mean concentration in the layer. Apart from the second term on the 
right-hand side of (11), which arises from the Soret term in the expression for the 
solute flux (2)) equations (9)-(11) are identical with those given previously by 
Nield (1967). However, in the present problem, the condition ( 7 )  which holds 
throughout the liquid in the stationary state implies the following relationship 

(13) 
between ,b and p‘ : 

Redefining 0 and I?: F = ga2ad20/v,  G = ga2d2a’I’/v 

and setting Q = @+G,  

(9)-( 11) may now be written 

y = 8, C( 1 -C)a‘/a, 

p’= -pX,C(l-C).  

(D2 - a’) ( 0 2  - a2 - ia) W = F( 1 - 7) + Q, (14) 

(D2-a2-ira)F = -RaZW, 115) 

(D2 - a2 - i s ~ r )  Q = - ~ S Y V F  + (ys/r) Ra2 W .  (16) 

R is the (thermal) Rayleigh number defined in the usual way. Eight boundary 
conditions are needed t o  completely specify the solutions of these equations but 
only in the case of free, perfectly conducting and pervious boundaries can they 
be solved exactly by analytical methods. At such boundaries W ,  F and Q satisfy 
the conditions 

In the experiments to be described here, however, these boundary conditions are 
quite unrealistic. Although the boundary surfaces are highIy conducting by 
comparison with the enclosed liquid in the present case (copper-water/methanol 
mixture) they are at the same time rigid and completely impervious. The latter 
condition is expressed mathematically by setting&equal to zero in the mass flux 
equation (2). A more satisfactory set of idealized boundary conditions can there- 
fore be set down as follows : 

W = ~ 2 W = p = Q = O ,  z =  +I (17) - 2 ’  

W = D W = F = D Q = O ,  X =  *$. (18) 

4. Stability criteria 
As mentioned above, equations (14)-(16) may be solved exactly when the 

boundary conditions of the problem are given by (17). These are satisfied by the 
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functions cos (2n- 1)n-z and sin 2nm Confining our attention to the lowest even 
mode ( W ,  P and Q proportional to  cos m) it may be shown without difficulty that 
the critical values of 12 and a for instability to set in as stationary convection are 

whilst for overstable motion we have 

27n4 ( r  + 8) ( r  + 1) (s + 1) REV = __ 
4 s2[1+r(l-y)] ' 

a, = 423, 

3n2 y ( l + s ) ( S + r ) - l  4 I .  2s [ r [ l+r ( l -y) ]  
g = -  - 

These results were reported and discussed in the earlier publication (Hurle & 
Jakeman 1969). I n  principle y is not restricted in magnitude or sign and the 
relations (19) and (21) are plotted in figure 1 for a wide range of y and taking 

FIGURE 1. R, 98. y for free pervious boundaries. (B,(O) = 27~414.) (a), time-dependent 
solution; (b )  and (c) ,  stationary convection. The square insert shows detail in the region 

R,/R,(O) N 1, y - 0. 
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r = 10 and s = l o 3  appropriate to water-like mixtures. Only curve (a)  corre- 
sponds to the onset of time-dependent motion. The detailed behaviour near y = 0 
is shown in the insert. For positive Rayleigh numbers (destabilizing temperature 
gradients) time-dependent motions are restricted to the region 

= > y > -  r ( 1 - r )  
r (1 + s) (s + r )  + r2'  ( 2 4 )  

When this inequality is satisfied, however, overstable oscillation is the first kind 
of instability to set in since r / s  1 for liquids and implies that RY < RF. There is 
in fact an asymptote in the @ versus y curve a t  y = [(s/r) + 1)I-l (shown dotted 
in figure 1) above which stationary convection is only possible provided that the 
applied temperature gradient is stabilizing. The strong destabilizing effect of the 
solute gradient; in such circumstances, and also when y is negative for destabilizing 
temperature gradients, shows up in the extremely small values taken by REC 
(curves (b)  and (c)). It is interesting to note that when y > [ (s / r )  + 11-1 the system 
is unstable to both positive and negative temperature gradients. The behaviour of 
a, and y is shown in figure 3 (curve (a ) )  and a, (which is constant) is plotted for 
completeness in figure 4 (curve (a)).  

The more realistic problem, which has not previously received attention, is 
governed by the boundary conditions ( 1 8 ) .  It is not so amenable to solution and 
we shall use the technique of Fourier analysis. An appropriate expansion for 
F (considering only even modes) is 

Setting 

m 

F = 2 A , c o s ( ~ ~ + ~ ) ~ T T z .  
n=O 

m m 

W =  X AnWn, Q =  C A n Q n  
n=O n=O 

in ( 1 4 )  and equating coefficients leads to the relation 

(D2 - a2) (D2 - a2 - ia) Wn = ( 1 - y ) cos ( 2 n  + 1 ) nz + Q,. 

(D2-a2-isa)&, = (ys/r)  (n2+a2) cos ( 2 n +  1)nz. 

( 2 7 )  

(28) 

Substituting for Win (16) from (15) and applying a similar procedure gives 

Finally if equation ( 1 5 )  is multiplied by cos ( 2 n +  1)nx and integrated over the 
layer using ( 2 5 )  and ( 2 6 )  above we obtain 

For a non-trivial solution ( 2 9 )  implies the usual determinantal relation must hold: 

Following Chandrasekhar (1961)  we take as a first approximation only the leading 
element of this determinant which is equivalent to setting A ,  = 0 for ?z =/= 0. We 
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might optimistically expect this to give results which are only in error by a few 
percent. This surmise is confirmed in certain limiting cases where exact solution is 
possible or where more accurate numerical techniques have been employed. 
Solving (27) and (28) with boundary conditions 

( 32) Wo = owo = B&, = 0, 

which follow from (18) and (26), and substituting for W, in the relation 

generates the result 

where 

M2 = a - (a2 + ia)) coth +a tad1 *(a2 + ig)k.  (37) 

Setting the imaginary part of (34) equal to zero leads to a relationship between 
CT and a. Substituting for IT in the real part of (34) then obtains the neutral 
stability curves in the R,a  plane. The minima of these curves and the corre- 
sponding critical values of a and cr have been evaluated numerically and are 
plotted as functions of y in figures 2-4. 

FI~IJRE 2. R, ws. y for rigid impervious conducting boundaries. (RJO) = 1707.) (a), time- 
dependent solutions; ( b )  and ( c ) ,  stationary convection. 

43 FLhf 47 
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The y dependence of CT shown in figure 3 (curve ( b ) )  is basically similar to that 
found in the free pervious boundaries case, though somewhat larger frequencies 
are predicted for any given value of y. Overstable motion, bounded by curve (a) 
of figure 2,  is confined to the same range of values of y as in the previously con- 
sidered case but the corresponding wave-number (figure 4, curve ( b ) )  increases 
sharply at high frequencies giving tall narrow cells in this region. This effect also 

Y 
FIGURE 3. a, vs. y corresponding to: (a) ,  curve (a)  of figure 1 ; and (b)  curve (a) of figure 2. 

- 0.5 0 0.5 1 .o 
Y 

FIGURE 4. a, vs. y for the free pervious boundaries case (a)  and the rigid impervious 
boundaries case: (b ) ,  time-dependent motion; (c) and (d), stationary convection. 

occurs near the asymptote (shown dotted) of curve (c), figure 2 (wave-number 
plot (c), figure 4) which corresponds to stationary convection in the presence of a 
destabilizing temperature gradient. Conversely, when the temperature gradient 
is stabilizing with y > 0 (figure 2, curve ( b ) )  it is evident from the corresponding 
wave-number plot (d )  of figure 4 that stationary convection sets in with a 
cellular structure of great lateral extent. The motion is dominated by the de- 
stabilizing solute gradient in this case and the problem is closely related to the 
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conventional (purely thermal) BBnard configuration with rigid, insulating boun- 
daries (Hurle, Jakeman & Pike 1967; Jakeman 1968). Provided that y is not too 
small the same may be said of the situation giving rise to curve (c) of figure 2 in 
the negative y region. The corresponding wave-number plot (c) of figure 4 shows 
that stationary convection also sets in first at nearly zero wave-number in this 
case. This is presumably due to the weak boundary condition on Q (18) which 
permits solute-driven convection to set in a t  relatively low levels of viscous 
dissipation requiring for energy balance only the low vorticity provided by long 
wavelength modes. 

2.0 

1 .o 

RxlO-" 0 

- 1.0 

-2.0 

FIGURE 5. Neutral stability curves for the case y = 5.0 x 10" (rigid impervious boundaries). 
(a),  time-dependent solution; ( b )  and (c) ,  time-independent solutions. 

As in the free pervious boundaries case, when y is positive instability is pre- 
dicted to occur for both stabilizing and destabilizing temperature gradients. 
However, s new feature to be found in figure 2 is that stationary convection can 
set in when the temperature gradient is stabilizing for u.ZZ y > 0. There are con- 
sequently certain small values of y for which stationary convection is predicted to 
occur when the system is heated from below and when it is heated from above. 
Such a phenomenon has been observed by Block (1956), although surface tension 
rather than buoyancy is more likely to be one of the driving forces in his 
experiments. Neutral stability curves for a value of y for which there exists 
time-dependent and time-independent solutions for destabilizing temperature 
gradients and time-independent solutions for stabilizing temperature gradients, 
are shown in figure 5. 

43-2 
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5. Experimental 
5.1. Apparatus 

The convection cell used was of very simple design. As outlined in 5 1 the basic 
requirement was for a thin cell so that Soret steady state, assumed in the theory, 
could be practically achieved in a reasonable time. Figure 6 is a schematic draw- 
ing of the basic design. The two thermodes consisted of a pair of copper cylin- 
ders, 2 in. in diameter and approximately 5 in. in length. A V groove was milled 
on one end-face of the lower (hot) thermode into which was fitted a vacuum 
0 ring. The depth of the groove was such that when the upper copper block 
was placed concentrically on the 0 ring it defined a cylindrical volume of 2 mm 
depth and 33 mm diameter; this volume formed the test cell. The apparatus was 
carefully levelled. 

Inhating Dewar &ask 
plate containing water and 

heater (not shown) 

FIGURE 6. Diagram of convection cell (not to scale). 

The lower thermode was attached to a thermally insulating plate which sat on 
the top of a Dewar flask. The Dewar contained a small resistance heater and was 
filled with water so that the thermode was immersed. A large insulated can was 
soldered to the top thermode as shown and was filled with water. 

The temperature difference aoross the cell (AT) was measured by means of a 
differential thermocouple constructed by tin-soldering the ends of a constantan 
wire to the faces of the copper thermodes which form the boundaries of the cell 
and by soldering a copper wire to each of theremote ends of the copper thermodes. 
The copper wires were fed to a potentiometric recorder. 

Temperature oscillations in the cell were detected by means of a fine thermo- 
couple made of spot-welded 50pm diameter chrome1 and alumel wires. An 
ordinary domestic sewing needle was used to ‘sew’ the thermocouple to the 0 
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ring. In  the initial experiments the thermocouple was strung across a diameter of 
the cell as shown in figure 6; in later experiments, it was sewn to the edge of the 
0 ring. The output from this thermocouple was fed to a second potentiometric 
recorder via a precision backing-off circuit. 

The resistance heater was connected in series with a vacuum thermojunction to 
a variable power supply driven by silicon-controlled rectifiers (SCR’s). The output 
of the vacuum thermojunction was compared with the voltage derived from a 
backing-off circuit and the difference voltage used to activate a Honeywell- 
Brown ‘Electr-o-volt ’ servo-control system which drove the SCR circuit. The 
backing-off circuit contained a motor-driven helical potentiometer which 
permitted the voltage to be raised or lowered linearly with time at any pre-set 
rate. 

5.2. Experiments 
Experiments were performed with water-methanol mixtures covering the 
composition range 0-4Owt % methanol (0+27.3 mole yo). The methanol used 
was of ‘AnalaR’ grade and the water was doubly distilled. Water-methanol 
mixtures were chosen because the Soret coefficient had been measured and was 
known to change sign at about 26-5 wt yo methanol. 

Because of our interest in liquid metals we would have liked to perform our 
experiments with a liquid metal. However, this was not attempted because of 
lack of data on the Soret coefficients of solutes in liquid metals. Moreover, as 
already mentioned it was necessary to have a thin cell in order to approach the 
condition of Soret steady state presumed by the theory. Since the critical 
temperature gradient for instability is proportional to where d is the cell 
depth, this necessitated a relatively high temperature gradient which could not 
readily be obtained with a liquid metal whose value of r is some two orders 
smaller than that for water. 

For the cell used and taking D = 1.28 x 10-6cm2sec-1 (see appendix) and 
d = 0.2 cm, we obtain from (8) 

7 N 5min. 

It was therefore necessary to choose cell heating times which were very long 
compared with 5min. Accordingly, the heating rate was adjusted so that the 
temperature difference across the cell increased at about 6 x 1O4Ksec-1. The 
critical Rayleigh number for the onset of convective motion was reached after 
typically 4 h. 

Tichacek, Kmak & Drickamer (1956) have measured the Soret coefficient of 
water-methanol mixtures a t  40 “C as a function of composition. Their data 
indicate that S, is positive for 0 < x 5 26.5, where x = wt % methanol, and 
negative for z 2 26.5. Their results are shown in figure 7. 

On the basis of the theory outlined in 5 4, the critical Rayleigh number should 
depend on methanol concentration as illustrated in figure 8 (simple free boundary 
theory was deemed adequate for this purpose). For very dilute methanol con- 
centrations the fluid is unstable with respect to cellular convection when heated 
from below. When the concentration has increased to the point where 

y > r ) l + ~ ) / [ ( s + r ) ( 1 + ~ ) + r ~ ]  = yc 
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(which is practically indistinguishable from y > 0) the system is unstable with 
respect to overstable motions when it is heated from below. As the methanol 
concentration is increased y increases (and the frequency of the overstable 
motion increases) and reaches a maximum at around 10 wt yo methanol. It then 
falls with further increase in methanol concentration, becoming equal to zero at 
about 26-5wt % at which point the overstable mode disappears. Beyond this 

I I 1 I I 1 

wt yo methanol (2) 

FIQURE 7. Soret coefficient data of Tichacek et al. (1956) for 
water-methanol mixtures a t  40 "C. 

FIGURE 8. Theoretically predicted dependence of critical Rayleigh number on composition 
for the water-methanol system. The full curves represent the marginal state for stationary 
convection; the dashed curve that for overstability. The two arrows indicate compositions 
for which y(a/r+ I )  = 1. 
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concentration y < 0 and the solute provides a destabilizing influence, resulting in 
the system becoming unstable to stationary convection at progressively lower 
Rayleigh numbers. 

In  the light of the above theoretical predictions we have studied the water- 
methanol system with R > 0 to search for (a)  overstability in the range up 
to N 26.5wt % methanol and (b )  a reduction in 22, due to a de-stabilizing 
Soret effect for concentrations > 26-5 wt  yo. 

5.3. Results 
In  all some seventeen experiments were performed with the above-described cell. 
(A preliminary series of experiments on a cruder form of cell which established 
the main phenomena, are not reported here.) The more significant results ob- 
tained with the final cell are presented in table 1, and displayed graphically in 
figures 9-14. 

Run no. 

la 
l b  
l c  
9 
8 

11 
7 
2 

17 
6 
3 
5 
4 

10 

15 

14 

16 

* 

t 

t 

§ 

Composition 

0 
0 
0 
0 
2.0 
2.0 
4.0 
8-25 
8.25 

(wt %) 

12.5 
16.5 
20.8 
25-5 
27.5 

29.9 

34.5 

40.0 

- 

- 

- 

- 

Mean cell 
temperature 

("C) Rc 
32.0 1720 
29.0 1660 
32.0 1645 
32.6 1645 
33.3 1720 
33.0 1665 
32.6 1705 
34.0 1810 
32.5 1960 
32.3 1835 
34.0 1730 
31.0 1935 
31.0 1875 
30.0 1990 
32.0 2458 
28.2 1803 
33.8 3140 
27.5 1860 
31.0 2780 
25.5 1803 
36.7 N 4830 

7 (sec) 
co 
co 
00 

00 

112 
? 

45 
39 
36 
32 
34 
45 
54 

53 
co 

- 
- 
- 
- 
- 
92 

w, da/ 104 
cm* sec-1 

0 
0 
0 
0 

22 

55 
65 
70 
79 
75 
56 
47 
0 

47 

- 

- 
- 
- 
- 
- 
27 

* No obvious increase in N u  at second transition. 
t Low-frequency fluctuations. Increase in Nu. 
$ Large amplitude high-frequency fluctuations developed. Small increase in Nu. 
§ Burst of regular oscillations occurred which persisted for 10 cycles only. No observable 

changes in Nu. 
TABLE 1 

The critical Rayleigh number for the experiments with pure water (experiment 
nos. 1 a, 1 b,  1 c and 9) was obtained from the discontinuity of the slope of the AT 
versus time record. The mean cell temperature at this point was obtained from 
the cell-temperature record. Taking d = 0.2cm we obtained a mean value for 
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R(0) of 1668 which compares with the theoretical value of 1707. The discrepancy is 
within the uncertainty in the value of d. All the results in figure 9 are plotted in 
the form R/R(O) where the experimental value of 1668 has been taken for R(0). 
The relevant parameters of the solution (e.g. a, K ,  v, a', y ,  etc.) depend rather 
strongly on concentration and temperature. The values used are discussed in the 
appendix. Uncertainty in the mean cell temperature contributes the major 
portion of the error bars displayed on the experimental points. 

W 

H I I 

20 30 40 
0 

10 

wt yo methanol (x) 

FIGURE 9. Experimentally determined vaIues of the critical Rayleigh number. The curve 
is the theoretically predicted curve for the onset of overstability. x , Overstable oscilla- 
tions; 0, stationary convection; ., finite-amplitude oscillatory modes. 

For compositions in the range 2.0-25-5 wt yo inclusive, the f i s t  observable 
convective instability was in the form of overstable oscillations. Typically these 
oscillations grew over a period corresponding to a few cycles and were then 
quenched (figure 10, plate I). At the point of quenching, there was a marked 
discontinuity in the slope of the AT/time record. No discontinuity could be found 
corresponding to the onset of overstable oscillations in agreement with the known 
fact that overstable motions do not markedly increase the Nusselt number 
(Nu) .  We attribute the quenching of the oscillations together with the marked 
change in the slope of the AT/time record (corresponding to a marked increase in 
Nusselt number) to the onset of a finite-amplitude mode triggered by the over- 
stable motions. Such modes have been predicted by Veronis (1965, 1968) and by 
Sani (1965). Put simply they arise from the fact that a large amplitude disturb - 
ance can partially mix-up the solute thereby tending to destroy the stabilizing 
contribution to the density gradient which was suppressing the purely thermal 
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Rayleigh-Jeffreys mode. The apparatus did not permit maintenance of constant 
R in the region of the marginal state so that we were unable to investigate 
whether small-amplitude oscillatory convection could be maintained. However 
we would tend to agree with the comments of Shirtcliffe (1969) that such 
motion inevitably grows until the finite-amplitude stationary mode is excited. 

For solutions with x 2 26.5 wt %, discontinuities in the A T  versus time curve 
occurred for R/R(O) N 1, but no discontinuities could be detected for R/R(O) < 1, 
although several experiments were performed, very carefully, with very slow 
heating rates. In  other words we were unable to detect the onset of stationary 
convection induced by a destabilizing solute gradient. On reflexion this is hardly 
surprising since the increase in Nu must be extremely small because convection 
can only be driven at a rate commensurate with the maintainance of a solute 
gradient by the Soret effect. The much greater increase in Nu,  when the layer 
becomes unstable to the Rayleigh-Jeffreys mode, is of course again detected. 

Upon further increasing R for the solutions with x > 26.5 wt  yo a second transi- 
tion is observed, which corresponds to the onset of a finite-amplitude time- 
dependent motion. The details of these effects, observed in experiments 10,14,15 
and 16, are given in the footnotes to table 1. 

I I I I I 

wt % methanol (2) 

FIGURE 11. Dependence of the frequency of overstable motion on composition. The shaded 
band represents the theoretical values for the temperature range 30-35 "C. 

The measured values of the frequency of the overstable modes (z < 26.5 wt yo) 
are recorded in table 1 and displayed in figure 11. These are not very accurate 
because only a few cycles of record were obtained before quenching by the finite- 
amplitude mode occurred. This was particularly true of the 2.Owt yo experiment. 
For compositions in the range 4.0 to 25.5 wt yo methanol AT remained sensibly 
constant for a period of some minutes at the onset of the finite-amplitude mode 
before continuing to increase at a rate which was slower than that prior to the 
onset of convection. (This corresponds to an increase in Nusselt number.) A 
typical ATltime record of this type is shown in figure 12 (plate l), and a graph of 
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the time interval for which AT remained sensibly constant (At,) plotted against 
composition is shown in figure 13. 

The ratio of the rates of heating before and after the onset of the oonvection, 

( conv . ) , N = '2 (cond.)/= dAT 
at 

are plotted versus composition in figure 14. This quantity must be related to the 
change in Nusselt number at the onset of convection. These results are discussed 
below. 

20 

h 

.s 
E - 10 

d 

0 

wt yo methanol (x) 

 FIG^ 13. Time interval ( Ato) for which AT remained constant at the onset of convection 
plotted against cell composition. 

I 1 

10 20 30 

wt yo methanol (a) 

3 

FIG- 14. Plot of ratio of heating rates N (see text) versus cell composition. 
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6. Discussion 
The curves drawn in figures 9 and 11 are computed from the theory given in 

$ 4  for the appropriate boundary conditions (equation (18)) and for mean cell 
temperatures of 30 and 35°C which encompasses the range covered by the 
experimental points. 

Agreement on the Rayleigh number is good in the range of compositions for 
which overstability occurs. However, the experimental points at the upper end 
of this range tend to lie above the theoretical curve; this may be due to an over- 
estimation of the expansion coefficient of the more concentrated mixtures 
(see appendix). 

The experimentally observed frequencies all lie beneath the theoretical curve 
for x < 15wt yo but above it at 25.5wt yo. A likely explanation for this is 
that the experimental Soret coefficient data used relate to a temperature of 40 "C, 
whereas the present experiments were performed with mean cell temperatures 
between 30 and 35 "C. 

Somewhat lower values of S, at low concentrations are required to fit the 
present data. Agreement as to the concentration at which 1.9, changes sign is 
good (26-5f 1.0wt yo). An additional factor is that it is known that the 
frequency of overstable modes decreases with increasing amplitude and in 
consequence experimentally determined frequencies represent a lower limit to 
the overstable frequency at the marginal state. 

The oscillatory behaviour seen at higher Rayleigh number for x > 26.5 wt  % 
has not been investigatedin detail. It may well be related to  the finite-amplitude 
oscillatory modes recently demonstrated by Krishnamurti (1970). 

Interpretation of figures 13 and 14 is somewhat difficult. It is noted that the 
form of the dependence of AT and N on composition is similar to that for R. In  
systems for which the heat flux (JQ) is the controlled parameter rather than the 
Rayleigh number, the Atc versus JQ curve can have a negative slope just 
above threshold for finite-amplitude modes such as considered by Busse (1967) 
and by Krishnamurti (1969). The present experiments conform more closely 
to the controlled AT limit. 

Since this work was performed and the bulk of this manuscript prepared, two 
very interesting papers have appeared which merit comment here. The first is by 
Caldwell (1970), who reports that during BBnard cell experiments aimed at 8 

determination of the expansion coefficient of sea water, he found that, for 
certain pressures and mean cell temperatures, he obtained heating curves with 
a negative-slope portion as described above, which exhibited hysteresis. In the 
negative-slope region rather irregular oscillations of about 20 min period were 
obtained. The Rayleigh number at which deviation from the 'conduction' 
heating line and oscillations occurred was greater than 1708. He considers the 
Soret effect as a possible mechanism but dismisses it in favour of a Busse-like 
finite-amplitude mode. He cites three reasons, why, in his view, the phenomenon 
cannot be due to a salt gradient caused by the Soret effect. We would offer the 
following comments. 

The first reason given was that, if the Soret effect was important, then it should 
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produce a destabilizing effect at higher temperatures where the sign of S, is 
known to  be negative. However, as we have already commented, the change in 
Nusselt number accompanying solutally-driven convective flow is extremely 
small and probably undetected. 

The second reason given was that the stabilization (increase in the critical 
Rayleigh number) occurred under those conditions for which Aa/a the fractional 
change in expansion coefficient between the extremes of temperature in the cell, 
was large. Since the sign of S, is determined by the relative magnitudes of the 
heat of transport divided by the molar volume for each component (de Groot & 
Mazur 1962, chapter XI) S, may well be correlated with Aa/a. 

The other recent paper of relevance to the present work is that of Legros, 
Rasse & Thomaes (1  970), who report measured Schmidt-Milverton plots for 
thermal diffusion cells containing three binary liquid mixtures of varying com- 
position. (The Soret effect is commonly referred to in chemical literature as 
‘thermal diffusion’.) In  particular they measured the system waterlmethanol 
and their figure 2 shows deviations from linearity in the convection region near 
the critical Rayleigh number for those compositions (10 and 20 wt  %) for which 
we have observed overstability. They do not comment on these non-linearities, 
but observe that there is an increase in the critical Rayleigh number for these 
concentrations. 

These authors considered the influence of the Soret effect on the onset of 
convection in binary mixtures in a letter published in 1968 (Legros, Van Hook & 
Thomaes). We regret that we were unaware of this work when we published our 
first paper. However, their considerations are confined to the suppression of 
linear-theory stationary modes and they do not appear to be aware of the 
existence of overstable or finite-amplitude modes. 

Finally, in regard to the original stimulus for the work reported in this paper, 
Dr P. Woodruff has pointed out to us that an isotope effect could give rise to two 
or more mass species in nominally pure liquids. There are two common isotopes 
of the metal gallium used in the experiments of Hurle (1966) and Harp & Hurle 
(1968) for example. However, the Soret coefficient for a system containing 
both species is negative (Lodding 1966) and would lead to a large decrease in R, 
(by a factor of N 50) for the onset of stationary convection rather than to the 
possibility of overstable motion. Whether the presence of isotopes of mercury 
in the experiments of Verhoeven (1969) is connected with the observed 
temperature oscillations remains an open question since the Soret coefficient is 
unknown for such a system. 

This paper is Crown Copyright, reproduced with the permission of The 
Controller, Her Majesty’s Stationery Office. 

Appendix. Data on the water-methanol system 
The required information is the concentration dependence, in the range 

0-4Owt yo methanol, of the following parameters: p, a, a‘, v, K ,  cP, D and 8,. Since 
some of these are rather strong functions of temperature, their temperature 
dependence in the range 30-35’ is also sought. 
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The data used were obtained from the International Critical Tables unless 
otherwise stated. 

(i) Density (p)  and expansion coeficient (a). Density data exists over the whole 
composition range for temperatures of 0, 10, 15.56 and 20°C. Data for pure 
water exists over the whole liquid range of course. Densities in the range 30-35 "C 
were obtained by linear extrapolation of the data for 15.56 and 20 "C. (The lower 
temperature data were not used because of the density anomaly in the water- 
rich solutions at the lower temperatures.) 

I 1 I 

/' 
8 -  

6 -  

2 -  

I I I 
0 10 20 30 

wt yo methanol (2) 

FIGTIRE 15. Dependence of a and a' on composition. Full curves represent 30 "C; 
dashed curves 35 "C. 

The expansion coefficients were also obtained by linear extrapolation: 

a(T,x) = a(To,x) + (aa/aT)~,,o(T-To). 

The use of (aa/aT) evaluated at x = 0 ( = 1-0 x 10-6K-2) may be a source of 
error. We adopted a similar procedure for ethanol-water mixtures for which 
experimental values of a(T, x )  existed and found that at 40 w t  yo ethanol our 
procedure gave estimates which were 13 % high. If the estimates were similarly 
high for water-methanol mixtures this would account for the small disorepancy 
between theory and experiment at high methanol concentrations displayed in 
figure 9. 
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(ii) Solutal expansion coeflcient (a'). a' was evaluated from the density com- 
position data at 0,19,15-56 and 20 "C. Values of a' for the range 30 ti0 35 "C were 
obtained by smooth extrapolation of these values. 

(iii) Kinematic viscosity (v). v = wIp (where w is the viscosity) was obtained 
from linear interpolation of published values for various compositions between 
25 and 35 "C and extrapolated density measurements as in (i) above. v exhibits 8 
maximum around 45 wt % methanol. 

I6 
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\ 
K (lo-' cm2 sec-l) / 

1 

1 
I I I I 

0 10 20 30 40 
wt o/, methanol (4 .- . .  

FIGURE 16. Dependence of Y, D and K on composition: full curves represent 30 "C;  dashed 
curves 35 "C. (D is assumed independent of temperature and composition.) 

(iv) Thermal conductivity (k). The values for pure water and pure methanol 
were calculated from known values at 20 "C and known temperature coefficients. 
Valiies for intermediate comnositions were calculated from the emniricrtl ._. . _ . ~  I 

relation (see International Critical Tables) : 

sinh[l.3]kmix(T) = sinh[l.3(1 - x ) ] ~ Z O + ~ i n h [ 1 ~ 3 ~ ] k , , ~ ~ .  

(v) Specijic heat (c,). c,(T) was obtained by linear interpolation from values 

(vi) Diffwion coe$cient (D).  This has been determined for a dilute solution of 
om2 sec-1) was used for all 

given for 20 and 40 "C. 

methanol in water at 15 "C. This value ( = 1.28 x 
mixtures. 
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(vii) Soret coeficient (ST). See text. 
All the above quantities were plotted against composition for temperatures 

30 and 35°C. Values at intermediate temperatures were obtained by linear 
interpolation. Similar graphs were constructed for the non-dimensional quanti- 
ties y, r and s. The assumed variation of a, a’, Y, D and K with temperature and 
concentration are displayed in figures 15 and 16. 
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FIGURE 10. Typical record of the cell temperature in the region of the onset 
of overstable oscillations. 

FIGURE 12. Typical record of temperature difference across cell ( A T )  versus time in the 
region of the onset of overstable convection. 
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